A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data

نویسندگان

  • Fabio Nobile
  • Raúl Tempone
  • Clayton G. Webster
چکیده

This work proposes and analyzes a Smolyak-type sparse grid stochastic collocation method for the approximation of statistical quantities related to the solution of partial differential equations with random coefficients and forcing terms (input data of the model). To compute solution statistics, the sparse grid stochastic collocation method uses approximate solutions, produced here by finite elements, corresponding to a deterministic set of points in the random input space. This naturally requires solving uncoupled deterministic problems as in the Monte Carlo method. If the number of random variables needed to describe the input data is moderately large, full tensor product spaces are computationally expensive to use due to the curse of dimensionality. In this case the sparse grid approach is still expected to be competitive with the classical Monte Carlo method. Therefore, it is of major practical relevance to understand in which situations the sparse grid stochastic collocation method is more efficient than Monte Carlo. This work provides strong error estimates for the fully discrete solution using L norms and analyzes the computational efficiency of the proposed method. In particular, it demonstrates algebraic convergence with respect to the total number of collocation points. The derived estimates are then used to compare the method with Monte Carlo, indicating for which problems the first is more efficient than the latter. Computational evidence complements the present theory and shows the effectiveness of the sparse grid stochastic collocation method compared to full tensor and Monte Carlo approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sparse grid stochastic collocation method for elliptic partial differential equations with random input data

This work proposes and analyzes a sparse grid stochastic collocation method for solving elliptic partial differential equations with random coefficients and forcing terms (input data of the model). This method can be viewed as an extension of the Stochastic Collocation method proposed in [Babuška-Nobile-Tempone, Technical report, MOX, Dipartimento di Matematica, 2005] which consists of a Galerk...

متن کامل

Stochastic Collocation for Elliptic PDEs with random data - the lognormal case

We investigate the stochastic collocation method for parametric, elliptic partial differential equations (PDEs) with lognormally distributed random parameters in mixed formulation. Such problems arise, e.g., in uncertainty quantification studies for flow in porous media with random conductivity. We show the analytic dependence of the solution of the PDE w.r.t. the parameters and use this to sho...

متن کامل

An anisotropic sparse grid stochastic collocation method for elliptic partial differential equations with random input data

This work proposes and analyzes an anisotropic sparse grid stochastic collocation method for solving elliptic partial differential equations with random coefficients and forcing terms (input data of the model). The method consists of a Galerkin approximation in the space variables and a collocation, in probability space, on sparse tensor product grids utilizing either Clenshaw-Curtis or Gaussia...

متن کامل

A stochastic collocation approach to constrained optimization for random data identification problems

In this talk we will present a scalable, embarrassingly parallel mechanism for optimal identification of statistical moments (mean value, variance, covariance, etc.) or even the whole probability distribution of input random data, given the probability distribution of some response (quantities of physical interest) of a system of stochastic partial differential equations (SPDEs). This stochasti...

متن کامل

A Spectral Method via Orthogonal Polynomial Expansions on Sparse Grids for Solving Stochastic Partial Differential Equations

Most mathematical models contain uncertainties that may be originated from various sources such as initial and boundary conditions, geometry representation of the domain and input parameters. When these sources are expressed as random processes or random fields, partial differential equations describing the underlying models become stochastic partial differential equations (SPDEs). Stochastic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2008